

7th International Conference of Engineering Against Failure

Investigation of the damping capacity of stochastic lattice structures

Prof. Elias Sarafis¹, Mr. Andreas Stamkos², Prof. Georgios Maliaris¹, MSc. Sofia Kavafaki¹ and Vassilios Mitridis¹ ¹International Hellenic University, Kavala Campus ²Intermek S.A., Kavala

Presenter: Sofia Kavafaki, PhD candidate at IHU, Kavala Campus

Within the framework of the Project ROBOMAR AM0P7-0074871 program Operational Programme "EASTERN MACEDONIA – THRACE" 2014-2020 Investment Plans for Innovation, Research and Development of Enterprises" in the sectors of the Regional Smart Specialisation Strategy (RIS3)

PRESENTATION CONTENTS

1st Part

Introduction

3º Part

Experimental set-ups

2nd Part Sample preparation and characterization

4º Part Data processing and results

6º Part Conclusions

Investigation of the damping capacity of stochastic lattice structures: Introduction

Scope

This work presents the design and experimental verification of 3D printed stochastic lattice structures to enhance the mechanical vibration isolation properties of a robotic milling support.

The research investigates the possibility of designing stochastic 3D structures employing the Voronoi tessellation technique, which can easily be incorporated in the design of critical components that require vibration damping in a lightweight design.

Investigation of the damping capacity of stochastic lattice structures: Introduction

Cellular materials

 Cellular materials are characterized by their porous microstructure that is comprised of solid and void networks

Stochastic – Voronoi lattices

- can be optimized for geometric, as well as mechanical requirements by parameter tuning,
- offer a promising approach for vibration and damping applications, providing efficient energy dissipation, broadband damping and adaptability to various scenarios, and
- have a high capacity for energy absorption. Due to their random and disordered structure, they can effectively dissipate energy from vibrations by converting it into heat.

The structures that were fabricated for this research were investigated by focusing on the optimal combination(s) of geometry and material.

2nd Part

Sample preparation and characterization

Design and Porosity

- A generative algorithm has been developed, using the add-on Grasshopper of the CAD software Rhinoceros.
- Porosity defines how much space is absent in the overall volume occupied by the cellular material.

Presenter: Sofia Kavafaki

Mixtures: ratios

In order to create the mixtures two different types of resins were combined:

- Durable resin: Resione K
- Flexible resin: Resione F69

Four different resin mixtures were used:

- First mixture: 100% durable resin,
- Second mixture: 75% durable resin and 25% flexible resin,
- Third mixture: 50% durable resin and 50% flexible resin and
- Fourth mixture: 100% flexible resin.

Characterization

- The scope is to investigate the effect of the concentration of elastic resin in the durable resin.
- It was found that increasing the concentration of the elastic resin in the durable resin resulted in a decrease in the required compressive load to achieve the same deformation.

	Elastic modulus <i>E</i> [Mpa]	Yield strength σ [Mpa]
Mixture 1	2800	85
Mixture 2	2550	69
Mixture 3	2200	40
Mixture 4	250	5

Specimens

- The specimens were fabricated via additive manufacturing method.
- A Stereolithography 3D printer was used.
- In total, 16 specimens were created (4 different porosity designs combined with 4 mixtures).

	Mixture 1	Mixture 2	Mixture 3	Mixture 4
Porosity 0%	Mix1-Por0	Mix2-Por0	Mix3-Por0	Mix4-Por0
Porosity 70%	Mix1-Por70	Mix2-Por70	Mix3-Por70	Mix4-Por70
Porosity 75%	Mix1-Por75	Mix2-Por75	Mix3-Por75	Mix4-Por75
Porosity 80%	Mix1-Por80	Mix2-Por80	Mix3-Por80	Mix4-Por80

Investigation of the damping capacity of stochastic lattice structures: Experimental set-up

Impact testing set-up

The experimental set-up used to determine the natural frequency and the damping ratio of the samples:

- 1. Specimen
- 2. Impact tool (hammer)
- 3. Accelerometer (1-axis)
- 4. Signal amplifier
- 5. Analog/Digital amplifier

Investigation of the damping capacity of stochastic lattice structures: Experimental set-up

Vibration testing set-up

In order to determine the mechanical vibration isolation the following set-up was created:

- 1. Milling tool
- 2. Marble piece
- 3. Specimen (vibration dampener)
- 4. 3-axis accelerometer

Investigation of the damping capacity of stochastic lattice structures: Experimental set-up

3-axis Acceleration

A 3-axis acceleration module was used to measure the acceleration in each axis.

Impact testing results

$$x(t) = Ae^{-\delta t} \cos(\omega_d t - \theta)$$

Data processing of vibration results

- For each of the samples, an accelerationfrequency diagram was developed through the use of the aforementioned setup.
- The accelerometer module measured and outputted the acceleration and frequency values over each axis in a separate channel.

FFT spectrum

Acceleration-frequency diagrams: x-axis 2200 RPM

X-axis maximum acceleration results

x @ 0%		Mix1			Mix2			Mix3				
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n			
2200	0.026	70	10	0.048	70	8	0.038	100	6			
3500	0.045	340	7	0.029	170	11	0.03	170	11			
5000	0.033	270	5	0.17	70	5	0.11	70	9			
x @ 70%		Mix1			Mix2			Mix3				
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n			
2200	0.034	290	11	0.019	190	4	0.038	100	3			x - Raw
3500	0.075	800	7	0.015	170	5	0.02	170	5	RPM [min ⁻¹]	g [m s ⁻²]	f [Hz]
5000	0.051	270	7	0.034	400	6	0.076	400	4	2200	0.12	150
										3500	0.63	120
x @ 75%		Mix1			Mix2			Mix3		5000	0.84	160
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n			
2200	0.028	70	4	0.022	150	7	0.01	170	2			
3500	0.018	160	5	0.025	260	6	0.014	170	3			
5000	0.028	70	4	0.022	150	7	0.052	230	5			
x @ 80%		Mix1			Mix2			Mix3				
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n			
2200	0.049	130	9	0.026	130	7	0.062	70	8			
3500	0.026	160	4	0.018	170	3	0.028	170	4			
5000	0.03	400	8	0.033	400	7	0.025	170	3			

Presenter: Sofia Kavafaki

n 6

X-axis maximum acceleration reductions

x @ 0%		Mix1		Mix2			Mix3						
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n				
2200	78%	70	10	60%	70	8	68%	100	6				
3500	63%	340	7	76%	170	11	75%	170	11				
5000	73%	270	5	-42%	70	5	8%	70	9				
x @ 70%		Mix1			Mix2			Mix3					
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n				
2200	72%	290	11	84%	190	4	68%	100	3			x - Raw	
3500	38%	800	7	88%	170	5	83%	170	5	RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n
5000	58%	270	7	72%	400	6	37%	400	4	2200	0.12	150	6
										3500	0.63	120	4
x @ 75%		Mix1			Mix2			Mix3		5000	0.84	160	4
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n				
2200	77%	70	4	82%	150	7	92%	170	2				
3500	85%	160	5	79%	260	6	88%	170	3				
5000	77%	70	4	82%	150	7	57%	230	5				
x @ 80%		Mix1			Mix2			Mix3					
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n				
2200	59%	130	9	78%	130	7	48%	70	8				
3500	78%	160	4	85%	170	3	77%	170	4				
5000	75%	400	8	73%	400	7	79%	170	3				

Y-axis maximum acceleration results

y @ 0%		Mix1			Mix2					
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n	
2200	0.033	370	13	0.038	130	11	0.028	170	6	
3500	0.08	340	6	0.059	170	9	0.087	170	10	
5000	0.035	340	4	0.13	170	5	0.12	170	9	
y @ 70%		Mix1			Mix2		Mix3			
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n	I
2200	0.087	170	10	0.025	680	10	0.019	170	6	
3500	0.05	400	8	0.048	440	7	0.09	210	12	RPM
5000	0.078	160	6	0.08	400	6	0.078	400	6	2
										3
y @ 75%		Mix1			Mix2	Mix3				
RPM [min ⁻¹]	g [m s ⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n	
2200	0.023	130	4	0.019	380	9	0.021	410	5	
3500	0.078	500	4	0.041	440	8	0.03	440	7	
5000	0.079	500	6	0.05	170	9	0.078	400	5	
y @ 80%		Mix1			Mix2			Mix3		
RPM [min ⁻¹]	g [m s ⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	
2200	0.049	130	9	0.024	130	7	0.043	230	10	
3500	0.078	500	4	0.04	500	5	0.034	170	6	
5000	0.1	400	6	0.042	170	6	0.03	400	5	

	y - Raw										
RPM [min ⁻¹]	g [m s ⁻²]	f [Hz]	n								
2200	0.86	150	8								
3500	0.25	130	8								
5000	0.89	170	5								

Y-axis maximum acceleration reduction

y @ 0%		Mix1	1 Mix2					Mix3			
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n		
2200	96%	370	13	96%	130	11	97%	170	6		
3500	91%	340	6	93%	170	9	90%	170	10		
5000	59%	340	4	85%	170	5	86%	170	9		
y @ 70%		Mix1									
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n		
2200	90%	170	10	97%	680	10	98%	170	6		
3500	94%	400	8	94%	440	7	90%	210	12	RPM [I	
5000	91%	160	6	91%	400	6	91%	400	6	22	
										35	
y @ 75%		Mix1			Mix3			50			
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n		
2200	97%	130	4	98%	380	9	98%	410	5		
3500	91%	500	4	95%	440	8	97%	440	7		
5000	91%	500	6	94%	170	9	91%	400	5		
y @ 80%		Mix1			Mix2			Mix3			
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n		
2200	94%	130	9	97%	130	7	95%	230	10		
3500	91%	500	4	95%	500	5	96%	170	6		
5000	88%	400	6	95%	170	6	97%	400	5		

Z-axis maximum acceleration results

z @ 0%		Mix1			Mix2			Mix3		
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	
2200	0.058	70	5	0.06	70	7	0.053	100	9	
3500	0.078	70	6	0.092	40	3	0.062	170	9	
5000	0.058	160	4	0.23	70	4	0.15	170	7	
z @ 70%		Mix1				Mix3				
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	l
2200	0.09	170	6	0.024	70	6	0.096	70	4	
3500	0.025	400	6	0.04	40	7	0.068	40	9	RPM
5000	0.085	160	5	0.098	170	6	0.18	230	5	22
										35
z @ 75%		Mix1				Mix3		50		
RPM [min ⁻¹]	g [m s ⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	g [m s⁻²]	f [Hz]	n	
2200	0.068	70	2	0.018	70	7	0.041	70	4	
3500	0.034	70	6	0.03	230	6	0.062	40	6	
5000	0.058	230	4	0.126	70	6	0.098	170	3	
z @ 80%		Mix1			Mix2			Mix3		
RPM [min ⁻¹]	g [m s⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n	g [m s ⁻²]	f [Hz]	n	
2200	0.052	70	8	0.05	70	7	0.03	170	4	
3500	0.068	120	8	0.05	40	5	0.034	170	2	
5000	0.031	160	4	0.06	70	8	0.043	170	3	

	z - Raw									
RPM [min ⁻¹]	g [m s ⁻²]	f [Hz]	n							
2200	0.128	70	6							
3500	0.68	130	4							
5000	0.13	170	3							

Presenter: Sofia Kavafaki

Z-axis maximum acceleration reduction

z @ 0%		Mix1			Mix2			Mix3				
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n			
2200	55%	70	5	53%	70	7	59%	100	9			
3500	39%	70	6	28%	40	3	52%	170	9			
5000	55%	160	4	-80%	70	4	-17%	170	7			
z @ 70%		Mix1			Mix2			Mix3				
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n			_
2200	30%	170	6	81%	70	6	25%	70	4			z - Raw
3500	80%	400	6	69%	40	7	47%	40	9	RPM [min ⁻¹]	g [m s⁻²]	f [Hz]
5000	34%	160	5	23%	170	6	-41%	230	5	2200	0.128	70
										3500	0.68	130
z @ 75%		Mix1			Mix2			Mix3		5000	0.13	170
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n			
2200	47%	70	2	86%	70	7	68%	70	4			
3500	73%	70	6	77%	230	6	52%	40	6			
5000	55%	230	4	2%	70	6	23%	170	3			
z @ 80%		Mix1			Mix2			Mix3				
RPM [min ⁻¹]	g	f [Hz]	n	g	f [Hz]	n	g	f [Hz]	n			
2200	59%	70	8	61%	70	7	77%	170	4			
3500	47%	120	8	61%	40	5	73%	170	2			
5000	76%	160	4	53%	70	8	66%	170	3			

Presenter: Sofia Kavafaki

n

Discussion

- Regardless of the specimens' properties, all 16 specimens reduced the acceleration values, when compared to milling without a dampener.
- The damping ratio showed an ascending trend due to the increase of flexible resin in the mixture.
- The acceleration values were reduced most at the y-axis. This axis had the highest acceleration values without the use of dampeners (this is the movement axis of the milling tool).

Discussion

- Mixture 4 was too elastic and produced no results due to specimen bending.
- While mixture 4 was not usable as a specimen, a percentage of the flexible resin in the durable one raised the vibration reduction beyond that of the mixture 1.
- Mixture 2 showed the best overall performance, especially combined with porosities 75% and 80%.
- Mixture 3 showed reduced performance on the z-axis, due to its slight deformation which resulted in a different direction of the applied force.

Conclusions

- The results showed enhanced damping characteristics, which varied according to the structure geometry and the used materials.
- Based on these results, lightweight vibration damping structures can be incorporated into the mechanical fixtures of robotic milling.
- The best overall damping performance was achieved from mixture 2, with an optimal porosity value of 75%, followed closely by 80%.
- Light-weight specimens showed reduced acceleration values. As light-weight objects are preferred due to lower demand of material, these results show that the light-weight specimens are clearly advantageous over the bulky ones.

THANK YOU FOR YOUR ATTENDANCE! ANY QUESTIONS?